

ETSI AERONÁUTICA Y DEL ESPACIO UNIVERSIDAD POLITÉCNICA DE MADRID

PR-CL-001.- COORDINACIÓN DE LAS ENSEÑANZAS

GUÍA DE APRENDIZAJE

CURSO 2017/18

ÍNDICE

- 1. DESCRIPCIÓN DE LA ASIGNATURA
- 2. CONOCIMIENTOS PREVIOS
- 3. COMPETENCIAS
- 4. RESULTADOS DE APRENDIZAJE
- 5. PROFESORADO
- 6. PROGRAMA
- 7. PLAN DE TRABAJO
- 8. SISTEMA DE EVALUACIÓN
- 9. RECURSOS DIDÁCTICOS
- 10. OTRA INFORMACIÓN

PLAN 14IA - GRADO EN INGENIERÍA AEROESPACIAL

Código	145003004		
Asignatura	CIENCIA DE LOS MATERIALES		
Nombre en Inglés	MATERIALS SCIENCE		
Materia	CIENCIA Y TECNOLOGÍA DE MATERIALES		
Especialidad	COMÚN A TODAS LAS ESPECIALIDADES	Curso	SEGUNDO
Idiomas	CASTELLANO	Semestre	TERCERO
		Carácter	ОВ
		Créditos	6 ECTS

1. DESCRIPCIÓN DE LA ASIGNATURA

Esta asignatura trata de formar al estudiante en el aspecto principal de la Ciencia de los Materiales: la relación existente entre la composición, la microestructura y las propiedades de un material. Después de establecer cuáles son las propiedades mecánicas de los sólidos, cómo se modeliza su estructura, cristalina o amorfa, y cómo esta estructura se altera según el proceso que se aplique sobre el material (deformación, tratamiento térmico...), se realiza una descripción de las principales categorías de materiales empleados en la industria y la ingeniería: materiales metálicos, polímeros, cerámicos y materiales compuestos.

2. CONOCIMIENTOS PREVIOS

a) CONOCIMIENTOS PREVIOS NECESARIOS para seguir con normalidad la ASIGNATURA.

Asignaturas superadas: Química 1º Curso

Otros requisitos:

b) CONOCIMIENTOS PREVIOS RECOMENDADOS para seguir con normalidad la ASIGNATURA.

Se recomienda tener superadas las Asignaturas:

Otros Conocimientos:

3. COMPETENCIAS

- **CG3.-** Capacidad para identificar y resolver problemas aplicando, con creatividad, los conocimientos adquiridos.
- **CG4.-** Capacidad para integrarse y formar parte activa de equipos de trabajo. Trabajo en equipo.
- CG8.- Capacidad de integrar el respeto al medio ambiente en el desarrollo de sus actividades.
- **CE11.-** Comprender las prestaciones tecnológicas, las técnicas de optimización de los materiales y la modificación de sus propiedades mediante tratamientos.
- **CE18.-** Conocimiento adecuado y aplicado a la Ingeniería de: los fundamentos de la mecánica de fluidos; los principios básicos del control y la automatización del vuelo; las principales características y propiedades físicas y mecánicas de los materiales.
- **CE19.-** Conocimiento aplicado de: la ciencia y tecnología de los materiales; mecánica y termodinámica; mecánica de fluidos; aerodinámica y mecánica del vuelo; sistemas de navegación y circulación aérea; tecnología aeroespacial; teoría de estructuras; transporte aéreo; economía y producción; proyectos; impacto ambiental.

4. RESULTADOS DE APRENDIZAJE

RA01.- Conocimiento, comprensión, aplicación y análisis de las propiedades, transformaciones y tratamientos de los materiales y su aplicación en ingeniería especialmente en el ámbito Aeroespacial.

- **RA02.-** Conocimiento general de los distintos materiales no metálicos utilizados en la ingeniería, como son los materiales poliméricos, los materiales termoplásticos, los materiales compuestos, etc.
- **RA03.-** Conocimiento general de los distintos materiales metálicos utilizados en la ingeniería, como son los aceros y las aleaciones ligeras.

5. PROFESORADO

Departamento: MATERIALES Y PRODUCCIÓN AEROESPACIAL (D130)

Coordinador de la Asignatura: Carmen ARRIBAS ARRIBAS

Profesorado	Correo electrónico	Despacho
AGUIRRE CARCER, Ínigo	inigo.aguirredecarcer@upm.es	B 113
AGUIRRE CEBRIÁN, Mª Vega	mariavega.aguirre@upm.es	B 216
ANTORANZ PÉREZ, Juan Manuel	juanmanuel.antoranz@upm.es	Lab. Ensayo de Materiales
ARRIBAS ARRIBAS, Carmen	carmen.arribas@upm.es	Lab. Química D7
FERNÁNDEZ LÓPEZ, Antonio	antonio.fernandez.lopez@upm.es	Lab. Química D1
GARCÍA SIMÓN, Antonio	antonio.garcia.simon@upm.es	Lab. Ensayo de Materiales
GONZÁLEZ PROLONGO, Margarita	mg.prolongo@upm.es	Lab. Química D2
GÜEMES GORDO, Alfredo	aguemes@upm.es	Lab. Química D4
HEREDERO CONCELLÓN, José Antonio	joseantonio.heredero@upm.es	Lab. Ensayo de Materiales
LUQUE TRUJILLO, Ignacio	ignacio.luque@upm.es	Lab. Ensayo de Materiales
MARTÍN PIRIS, Nuria	nuria.mpiris@upm.es	Lab. Ensayo de Materiales
MENÉNDEZ MARTÍN, José Manuel	jose.m.menendez@upm.es	Lab. Química D3
PÉREZ ALDA, Consolación	consolacion.perez@upm.es	B 216
PINTADO SANJUANBENITO, José María	josemaria.pintado@upm.es	Lab. Química
SALAMANCA GARCÍA, Ángel	a.salamanca@upm.es	Lab. Ensayo de Materiales
VISCASILLAS MORILLO, Manuel José	mj.viscasillas@upm.es	B 216

Los horarios de tutorías estarán publicados en la página Moodle de la asignatura.

6. TEMARIO

Tema 1. SÓLIDOS CRISTALINOS.

1.1. Introducción a la Ciencia de los Materiales. Relación entre estructura y propiedades de los materiales 1.2. Sólidos cristalinos: sistemas cristalinos. Celdilla unidad. Tipos de redes. 1.3. Definición de direcciones y planos cristalográficos: índices de Miller. Empaquetamiento atómico. 1.4. Redes cristalinas de materiales metálicos. 1.5. Redes cristalinas de materiales cerámicos. 1.6. Caracterización de estructuras cristalinas: Difracción de Rayos X.

Tema 2. PROPIEDADES MECÁNICAS DE LOS MATERIALES.

2.1. Introducción a las propiedades mecánicas: Ensayos mecánicos. 2.2. Ensayo de tracción: comportamiento elástico, módulo y límite elástico. Comportamiento plástico. Resistencia atracción. Ductilidad. 2.3. Dureza. Tenacidad. Ensayos de impacto. 2.4. Fractura. Tenacidad de fractura.

Tema 3. DIAGRAMAS DE FASES.

3.1. Introducción a los diagramas de fase: Regla de las fases. Alotropía. 3.2. Diagramas de fase de sistemas binarios. Constituyentes y tipos de fase. 3.3. Diagramas de fase de sistemas isomorfos. Regla de la palanca. Reglas de Hüme –Rothery. 3.4. Transformaciones líquido-sólido. Eutéctica y peritéctica. 3.5. Transformaciones en estado sólido: Eutectoide y peritectoide.

Tema 4. INTRODUCCIÓN A LOS MATERIALES POLIMÉRICOS.

4.1. Introducción. Homopolímeros y copolímeros. Topología macromolecular. Clasificación tecnológica de polímeros. 4.2. Características estructurales. Isómeros configuracionales y conformacionales. 4.3. Pesos moleculares promedios en polímeros. Polidispersidad. 4.4. Técnicas de determinación de pesos moleculares.4.5. Polimerización: polimerización por adición y por condensación. Técnicas de polimerización. 4.6. Solubilidad e hinchamiento en polímeros. Factores que afectan a la solubilidad.

Tema 5. CRISTALINIDAD Y TRANSICIONES TÉRMICAS EN POLÍMEROS.

5.1. Estado amorfo y estado cristalino en polímeros. 5.2. Métodos de determinación de la cristalinidad en polímeros. 5.3. Transiciones térmicas: fusión y transición vítrea. 5.4. Factores determinantes de las temperaturas de fusión y de transición vítrea. 5.5. Fibras. Obtención y requisitos del polímero para la obtención de fibras. 5.6 Principales fibras de altas prestaciones: Propiedades.

Tema 6. POLÍMEROS RETICULADOS.

6.1. Polímeros entrecruzados: Tipos. 6.2. Etapas en la reacción de curado de un termoestable. 6.3. Diagrama tiempo-temperatura-transformación. 6.4. Estructura y propiedades de resinas epoxi, poliéster y fenólicas. Principales aplicaciones. 6.5. Procesado de polímeros termoestables. 6.6. Elastómeros: vulcanización, tipos y refuerzos.

Tema 7. PROPIEDADES MECÁNICAS DE POLÍMEROS. MODIFICACIÓN DE PROPIEDADES.

7.1. Comportamiento mecánico: influencia de la temperatura. 7.2. Comportamiento viscoelástico en polímeros. 7.3. Curvas tensión-deformación según el tipo de polímero. Fluencia. 7.4. Termoplásticos de uso común y de ingeniería. 7.5. Modificación de propiedades de polímeros. 7.6. Procesado de polímeros termoplásticos.

Tema 8. ADHESIVOS.

8.1. Adhesivos. Ventajas e inconvenientes de la unión adhesiva. 8.2. Etapas en la unión adhesiva. Humectación. Endurecimiento. Criterios para la selección de un adhesivo. 8.3. Trabajo de adhesión y de cohesión. 8.4. Durabilidad de la unión adhesiva. Agentes externos que limitan ladurabilidad de la unión. Tratamientos superficiales. Tipos de adhesivos.

Tema 9. MATERIALES COMPUESTOS DE MATRIZ POLIMÉRICA.

9.1. Introducción. Clasificación de los materiales compuestos. Materiales compuestos en estructuras aeronáuticas. 9.2. Componentes de un material compuesto de matriz polimérica. Función y selección de la matriz y la fibra. Distinción entre cinta y tejido. 9.3. Preimpregnados. Fabricación con preimpregnados y fibra seca. 9.4. Procesado de materiales compuestos. Ciclo de curado en autoclave de un MC.

Tema 10. MATERIALES CERÁMICOS.

- 10.1. Introducción a los materiales cerámicos. Clasificación de los materiales cerámicos. Estructura. 10.2. Procesado de cerámicos. 10.3. Propiedades térmicas, mecánicas y eléctricas de los cerámicos. 10.4. Mecanismos de aumento de la tenacidad en cerámicos. 10.5. Cerámicas técnicas o ingenieriles. 10.6. Vidrios.
- Tema 11. IMPERFECCIONES EN REDES CRISTALINAS.
 - 11.1. Defectos puntuales en redes metálicas. 11.2. Otros defectos en redes metálicas.
- Tema 12. TRANSFORMACIONES LÍQUIDO-SÓLIDO EN MATERIALES METÁLICOS.
 - 12.1. Solidificación. 12.2. Estructura granular. Velocidad de enfriamiento y tamaño de grano. 12.3. Segregación.
- Tema 13. TRANSFORMACIONES EN ESTADO SÓLIDO EN MATERIALES METÁLICOS.
 - 13.1. Difusión en estado sólido. 13.2. Transformaciones térmicas: nucleación y crecimiento. 13.3. Alotropía. 13.4. Transformaciones atérmicas o sin difusión.
- Tema 14. DEFORMACIÓN PLÁSTICA DE MATERIALES METÁLICOS.
 - 14.1. Dislocaciones. Definición y propiedades. 14.2. Movimiento de dislocaciones. 14.3. Interacción entre dislocaciones. 14.4. Origen y multiplicación de las dislocaciones. 14.5. Relación entre las dislocaciones y la deformación plástica: sistemas de deslizamiento. 14.6. Capacidad de deformación de redes metálicas. 14.7. Deformación plástica de policristales. 14.8. Textura.
- Tema 15. MECANISMOS DE ENDURECIMIENTO EN MATERIALES METÁLICOS.
 - 15.1. Endurecimiento por acritud. Mecanismos. 15.2. Recocido contra acritud. Objetivo y etapas. 15.3. Endurecimiento por solución sólida. 15.4. Endurecimiento por segundas fases. 15.5. Endurecimiento por precipitación.
- Tema 16. MECANISMOS DE FALLO EN SERVICIO: FATIGA.
 - 16.1. Definición y etapas del proceso. 16.2. Nucleación y propagación de la grieta. 16.3. Vida a fatiga. Curvas S-N. Límite de fatiga. 16.4. Factores que influyen en la vida a fatiga.
- Tema 17. MECANISMOS DE FALLO EN SERVICIO: FLUENCIA.
 - 17.1. Definición y etapas del proceso. 17.2. Mecanismos de fluencia. 17.3. Factores que influyen en la deformación por fluencia. 17.4. Parámetros para diseño en fluencia.
- Tema 18. OXIDACIÓN Y CORROSIÓN EN MATERIALES METÁLICOS.
 - 18.1. Mecanismos de oxidación en metales. Relación de Pilling-Bedworth. 18.2. Corrosión en metales. Definición y tipos.
- Tema 19. ALEACIONES FÉRREAS.
 - 19.1. Diagrama Fe-C. Constituyentes. 19.2. Aceros y fundiciones. 19.3. Descomposición de la austenita. Curvas TTT. 19.4. Transformación martensítica. 19.5. Aceros de baja aleación: aleantes e influencia en las curvas TTT. 19.6. Tratamientos térmicos de los aceros. 19.7. Recocido y normalizado. 19.8. Temple. Templabilidad. Agrietabilidad en el temple. Influencia de los elementos de aleación. 19.9. Revenido. Fragilidad de revenidos. Influencia de los elementos de aleación. 19.10. Otros tratamientos térmicos. 19.11. Tratamientos superficiales del acero. 19.12. Tipos especiales de aceros.

Tema 20. ALEACIONES LIGERAS.

- 20.1. Metales ligeros. Comparación de propiedades. 20.2. Aleaciones de aluminio. Tipos y nomenclatura.
- 20.3. Endurecimiento por acritud. Estados H. 20.4. Endurecimiento por precipitación. Estados T. 20.5. Propiedades y aplicaciones de las principales familias de aleaciones de aluminio.

Tema 21. SELECCIÓN DE MATERIALES.

21.1. Elección de materiales de aplicación en la industria aeroespacial.

PRÁCTICAS DE LABORATORIO

- P1.- P1A: Diagrama de fases Bi-Sn. P1B: Adhesivos.
- P2.- P2A: Variación del grado de curado, α , y de la temperatura de transición vítrea, T_g , durante el curado isotermo de una resina epoxi. P2B: Caracterización de polímeros por espectroscopía infrarroja.
- P3.- P3A: Propiedades mecánicas de los materiales metálicos. P3B.- Variación de propiedades por acritud y recocido.
- P4.- P4A: Sesión especial de introducción a la práctica. P4B: Tratamientos térmicos de aceros.

7. PLAN DE TRABAJO

a) Cronograma.

Semana N°	Actividad presencial en Aula	Actividad presencial en Laboratorio	Otra actividad	Actividad de Evaluación
	Introducción. Tema 1.			
	LM: Lección Magistral			
1	RPA: Resolución de problemas en el aula			
	Tema 2.			
	LM: Lección Magistral			
	Tema 2.			
	LM: Lección Magistral			
2	RPA: Resolución de			
2	problemas en el aula			
	Tema 3.			
	LM: Lección Magistral			-1,
	Tema 3.			
	LM: Lección Magistral	Práctica P1		
3	RPA: Resolución de	PL: Prácticas de		
	problemas en el aula	Laboratorio		
	Tema 4.			
	LM: Lección Magistral			
	Tema 5.	Práctica P1		
4	LM: Lección Magistral	Práctica P3		
	Tema 6.	PL: Prácticas de		
	LM: Lección Magistral	Laboratorio		
	Tema 6.			
	LM: Lección Magistral	Práctica P1		
5	Tema 7.	Práctica P3		
	LM: Lección Magistral	PL: Prácticas de		
	RPA: Resolución de problemas en el aula	Laboratorio		

Semana N°	Actividad presencial en Aula	Actividad presencial en Laboratorio	Otra actividad	Actividad de Evaluación
	Tema 8.	Práctica P1		
6	LM: Lección Magistral	Práctica P2		
	Tema 9.	Práctica P3		
	LM: Lección Magistral	PL: Prácticas de Laboratorio		111111111111111111111111111111111111111
	Tema 10.	PrácticaP2		
7	LM: Lección Magistral	Práctica P3		
	Tema 11. LM: Lección Magistral	PL: Prácticas de Laboratorio		
	Tema 12.	Práctica P2		
8	LM: Lección Magistral	Práctica P3		
0	Tema 13.	PL: Prácticas de		
	LM: Lección Magistral	Laboratorio		
	Tema 14.	Práctica P2		
9	LM: Lección Magistral	Práctica P3		
	RPA: Resolución de	PL: Prácticas de Laboratorio		
	problemas en el aula	Laboratorio		Prueba de Evaluación
	Tema 15.	Práctica P2		POPF: Prueba Objetiva
10	LM: Lección Magistral	PL: Prácticas de		Parcial
	J	Laboratorio		Evaluación Continua
	Tema 16.			
	LM: Lección Magistral			
	RPA: Resolución de			
	problemas en el aula			
44	Tema 17.	Práctica P4		
11	LM: Lección Magistral	PL: Prácticas de		
	RPA: Resolución de problemas en el aula	Laboratorio		
	Sesión especial			
	práctica P4A.			
	LM: Lección Magistral			
	Tema 18.			
	LM: Lección Magistral			
	Tema 19.	Práctica P4		
12	LM: Lección Magistral	PL: Prácticas de		
	Sesión especial práctica P4A.	Laboratorio		
	LM: Lección Magistral			
	Tema 19.			
	LM: Lección Magistral			
	RPA: Resolución de	Práctica P4		Prueba de Evaluación
13	problemas en el aula	PL: Prácticas de		POPF: Prueba Objetiva Parcial
	Sesión especial	Laboratorio		Evaluación Continua
	práctica P4A.			
	LM: Lección Magistral			
	Tema 19.			
14	LM: Lección Magistral Tema 20.			
	LM: Lección Magistral			
	LIVI. LECCIOTI IVIAYISHAI			

Semana N°	Actividad presencial en Aula	Actividad presencial en Laboratorio	Otra actividad	Actividad de Evaluación
15	Tema 20.			
15	LM: Lección Magistral			
	Tema 20.			
14	LM: Lección Magistral			
16	Tema 21.			
	LM: Lección Magistral			

b) Metodologías Docentes.

Métodos Docentes	EPD	LM	PL	RPA	TP	Otros*
ECTS	3,1	1,9	0,5	0,3		

LM: LECCIÓN MAGISTRAL

PBL: APRENDIZAJE BASADO EN PROYECTOS

PL: PRÁCTICAS DE LABORATORIO

RPA: RESOLUCIÓN DE PROBLEMAS EN EL AULA

TP: TUTORÍAS PROGRAMADAS

8. SISTEMA DE EVALUACIÓN

a) Tribunal de Evaluación.

Presidente:	Carmen ARRIBAS ARRIBAS	
Vocal:	Mª Vega AGUIRRE CEBRIÁN	· · · · · · · · · · · · · · · · · · ·
Secretario:	Consolación PÉREZ ALDA	
Suplente:	Margarita GONZÁLEZ PROLONGO	•

 $[\]textbf{*Otros} \ (\text{especificar}):$

b) Actividades de Evaluación.

Semana N°	Descripción	Tipo Evaluación	Técnica Evaluativa	Duración	Peso	Nota mínima	Competencias
10	Prueba de evaluación	EC	POPF	2 h		5,0	CG3, CE11, CE18, CE19
13	Prueba de evaluación	EC	POPF	2,5 h		5,0	CG3, CE11, CE18, CE19
	Evaluación de las prácticas	EC	EPT			5,0	CG3, CG4, CG8, CE11, CE18, CE19
Convocatoria ordinaria y extraordinaria	Prueba de evaluación	SEF	POPF	4h		5,0	CG3, CE11, CE18, CE19

c) Criterios de Evaluación.

Evaluación del aprendizaje:

La evaluación de los alumnos se estructura en dos partes correspondientes a los dos bloques temáticos en los que se divide la asignatura. La primera parte (parte 1) incluye los diez primeros temas del programa, mientras que a la segunda (parte 2) le corresponden los once temas restantes. La evaluación de cada una de las partes incluirá teoría y laboratorio.

Evaluación de los contenidos teóricos de la asignatura:

Se realizarán dos pruebas de evaluación intermedia (PEI).

Para la <u>parte 1</u> de teoría se realizará un examen liberatorio al finalizar la impartición de los temas de dicha parte (Temas 1 al 10). Para la evaluación de la <u>parte 2</u> de teoría se realizará un examen liberatorio al finalizar el Tema 18, que incluirá la materia correspondiente a los Temas 11 al 18; la evaluación de los contenidos de los Temas 19 al 21 se realizará en el examen de la convocatoria ordinaria de enero.

Para liberar los contenidos de las pruebas intermedias correspondientes a cada una de las partes se deberá conseguir una nota igual o superior a cinco (5) en la calificación correspondiente. El aprobado de la prueba de evaluación intermedia (PEI) de la <u>parte 1</u> se respetará hasta el examen extraordinario de julio. El aprobado de la PEI de la <u>parte 2</u> se guardará únicamente hasta la convocatoria ordinaria de enero. En el supuesto de que el alumno no supere el examen de alguna de las pruebas intermedias, tendrá la opción de recuperar esa parte en el examen final.

En la parte 1 el examen constará de una prueba tipo test y de otra con preguntas a desarrollar.

El test es eliminatorio y debe obtenerse como mínimo un 4 sobre 10; si no se alcanza esta nota, la calificación de la parte 1 será la correspondiente al test.

Examen final:

Constará de dos partes de acuerdo a la estructura de la asignatura. Ambas partes podrán promediar siempre que la nota en cada una de ellas sea \geq 4. Para aprobar la asignatura la media de las dos partes debe ser \geq 5.

Los alumnos que aprobaron la PEI de la parte 2 de la asignatura deberán sacar en la convocatoria de enero una nota \geq 5 en el examen de los temas 19 a 21. La nota final de la parte 2 estará formada por un 65% de la nota de la PEI y un 35% de la de los temas 19 a 21.

Las notas obtenidas en la convocatoria de Enero ≥ 5 en cada una de las partes, se respetarán hasta la convocatoria de Julio.

El peso de la calificación de la teoría de la asignatura en la nota final será del 85%.

Evaluación del trabajo práctico de laboratorio:

Se evalúa el trabajo realizado en las prácticas corrigiendo los trabajos del alumno sobre las experiencias realizadas. Además, en el examen final, se realiza una prueba escrita sobre el trabajo experimental desarrollado.

Para cada parte de la asignatura, la nota final de laboratorio será la media entre la nota de los trabajos (obtenida como media de las calificaciones de cada uno de ellos) y la calificación de la prueba escrita correspondiente. En principio, se deben aprobar tanto los trabajos como la prueba escrita para aprobar las prácticas de cada parte. No obstante, ambas notas (trabajos y prueba escrita) podrán promediar siempre que cada una de ellas sea ≥ 4 y la media ≥ 5 . En el caso de suspender los trabajos, deberán presentarse nuevamente para la siguiente convocatoria aquellos trabajos que obtuvieron una nota inferior a 5.

Para aprobar el laboratorio en su totalidad, las notas del laboratorio de las partes 1 y 2 de la asignatura deben ser \geq 4 y la media de las dos partes \geq 5.

El aprobado de los trabajos de prácticas se mantendrá para las siguientes convocatorias.

La calificación del laboratorio tendrá un peso del 15% en la nota final obtenida en la asignatura.

La realización de las prácticas de laboratorio es imprescindible para superar la asignatura.

Es necesario aprobar el laboratorio para superar la asignatura.

9. RECURSOS DIDÁCTICOS

Descripción	Tipo	Observaciones
ALFREDO GÜEMES Y NURIA MARTÍN. "Ciencia de Materiales para Ingenieros". Ed. Pearson, 2012.	Bibliografía	
W.D. CALLISTER, D.G. RETHWISCH. "Ciencia e Ingeniería de los Materiales" Ed. Reverté, 2ª Edición, 2016.ISBN: 978-84-291-7251-5.	Bibliografía	
J.F. SHACKELFORD. "Introducción a la Ciencia de Materiales para Ingenieros". Ed. Pearson, 2005, 6ª Edición, ISBN: ISBN: 978-84-205-4451-9.	Bibliografía	
W.F. SMITH, J. HASHEMI. "Fundamentos de la Ciencia e Ingeniería de Materiales". Ed. Mc. Graw Hill, 4ª Edición, 2007, ISBN: 970-10-5638-8.	Bibliografía	
V. JOHN. "Introduction to Engineering Materials". Ed. Palgrave Mc Millan, 4 ^a Edición, 2003, ISBN: 0-333-94917-X.	Bibliografía	
ARTURO HORTA ZUBIAGA. "Macromoléculas". Ed. UNED Ediciones, 2ª Edición, 1991, ISBN: 84-362- 2663-1.	Bibliografía	
M. CHANDA, Y.S.K. ROY. "Plastics Technology Handbook". Ed. CRC Press, 4 ^a Edición, 2007, ISBN: 0-8493-7039-6.	Bibliografía	

Descripción	Tipo	Observaciones
D. HULL, T.W. CLYNE. "An Introduction to Composite Materials". Ed. Cambridge Univ. Press, 2 ^a Edición, 1996, ISBN: 0-521-38190-8.	Bibliografía	
GEROGE KRAUSS. "Steels: Heat Treatment and Processing Principles". Ed. ASM International, ISBN: 0-87170-370-X.	Bibliografía	
I.J. POLMEAR. "Light Alloys". Ed. Arnold, ISBN: 0-340-632070.	Bibliografía	
Plataforma de tele-enseñanza B-learning http://moodle.upm.es/titulaciones/oficiales/	Recursos web	En esta plataforma se incluyen documentos docentes básicos de la asignatura, enlaces, test de autoevaluación, ejercicios propuestos y resueltos, etc. y se utiliza como método de comunicación de avisos y solución de dudas.

10. OTRA INFORMACIÓN