

ETSI AERONÁUTICA Y DEL ESPACIO UNIVERSIDAD POLITÉCNICA DE MADRID

PR-CL-001.- COORDINACIÓN DE LAS ENSEÑANZAS

GUÍA DE APRENDIZAJE

CURSO 2017/18

ÍNDICE

- 1. DESCRIPCIÓN DE LA ASIGNATURA
- 2. CONOCIMIENTOS PREVIOS
- 3. COMPETENCIAS
- 4. RESULTADOS DE APRENDIZAJE
- 5. PROFESORADO
- 6. PROGRAMA
- 7. PLAN DE TRABAJO
- 8. SISTEMA DE EVALUACIÓN
- 9. RECURSOS DIDÁCTICOS
- 10. OTRA INFORMACIÓN

PLAN 14IA - GRADO EN INGENIERÍA AEROESPACIAL

•	145009025			
	SIMULADORES GRÁFICOS DE FORMACIÓN Y ENTRENAMIENTO			
	Graphic Simulators for Learning & Training Purp	Graphic Simulators for Learning & Training Purposes		
Materia	Ingeniería Gráfica			
Especialidad	Común	Curso	CUARTO	
Idiomas	CASTELLANO	Semestre	OCTAVO	
		Carácter	OP	
		Créditos	6 ECTS	

1. DESCRIPCIÓN DE LA ASIGNATURA

En el caso del sector aeroespacial, un simulador de vuelo reproduce la experiencia de pilotar una aeronave de la forma más precisa y realista posible. Tanto los simuladores de última generación como los más sencillos, cumplen la función básica de capacitar a la tripulación en procedimientos normales y situaciones anormales de emergencia. Estos simuladores debido a su complejidad técnica, tanto en su diseño y como en su construcción, tienen un alto coste económico, con una repercusión directa sobre el coste de hora de vuelo en el uso de los mismos, estando sólo al alcance de grandes empresas y compañías aéreas.

Un Simulador Gráfico de Formación y Entrenamiento es un sistema integrado de alta tecnología de hardware y software, que intenta replicar y reproducir experiencias reales a través de la Realidad Virtual. En un simulador de alta calidad el sistema integrado no solo debe ejecutar la simulación en tiempo real, sino que además debe conseguir que la experiencia del usuario se aproxime lo más posible a la realidad (alto grado de inmersión). Su utilización abarca un amplio espectro de aplicaciones para los mercados aeroespacial, defensa y seguridad e infraestructura crítica.

La asignatura tiene como propósito dotar al alumno de aquellas competencias que le permitan comprender a grandes rasgos el funcionamiento de un Simulador Gráfico. Debido a la complejidad de la tecnología utilizada, el programa de la asignatura se centra en los aspectos inmersivos del sistema relativos a la representación gráfica del entorno; para ello se estudiarán los formatos y características de las bases de datos gráficas del simulador constituyentes de una parte de la Realidad Virtual asociada al simulador.

El alumno utilizará plataformas de software de última generación para la creación de modelos y escenarios geoespecíficos virtuales donde se desarrollan los ejercicios de simulación. Además, aprenderá a interactuar con dicho escenario a través de un motor gráfico y dispositivos hápticos (gafas de realidad virtual, joystick, pedales, controles, etc.).

2. CONOCIMIENTOS PREVIOS

a) CONOCIMIENTOS PREVIOS NECESARIOS para seguir con normalidad la ASIGNATURA.

Asignaturas superadas:

Otros requisitos:

b) CONOCIMIENTOS PREVIOS RECOMENDADOS para seguir con normalidad la ASIGNATURA.

Se recomienda tener superadas las Asignaturas:

Otros Conocimientos: conocimientos básicos de programación.

3. COMPETENCIAS

- **CE05.-** Capacidad de visión espacial y conocimiento de las técnicas de representación gráfica, tanto por métodos tradicionales de geometría métrica y geometría descriptiva, como mediante las aplicaciones de diseño asistido por ordenador.
- **CG06.-** Uso de las Tecnologías de la Información y de las Comunicaciones
- **CEO3.-** Conocimientos básicos sobre el uso y programación de los ordenadores, sistemas operativos, bases de datos y programas informáticos con aplicación en ingeniería.

4. RESULTADOS DE APRENDIZAJE

RA01.- Razonar abstractamente.

RA02.- Saber resolver problemas de forma gráfica mediante su programación con un lenguaje estructurado

RA03.- Establecer relación entre materias.

5. PROFESORADO

Departamento: AERONAVES Y VEHÍCULOS ESPACIALES **Coordinador de la Asignatura:** José Luis PÉREZ BENEDITO

Profesorado	Correo electrónico	Despacho
PÉREZ BENEDITO, José Luis (Coordinador)	joseluis.perez@upm.es	B-126
ALIAGA MARAVER, José Juan	jj.aliaga@upm.es	B-126
ÁVILA SÁNCHEZ, Sergio	s.avila@upm.es	B-126
IZQUIERDO MESA, Luis	luis.izquierdo@upm.es	B-126

Los horarios de tutorías estarán publicados en: el espacio Moodle de la asignatura así como en el tablón de anuncios de la Unidad Docente de Expresión Gráfica

6. TEMARIO

Tema 1. INTRODUCCIÓN A LA TECNOLOGÍA CON SIMULADORES GRÁFICOS.

- 1.1. Definición y componentes.
- 1.2. Realidad Virtual.

Definición. Gráficos prerrenderizados vs. gráficos en tiempo real.

1.3. FFS (Full Flight Simulators)

Especificaciones y ejemplos de implementación.

Tema 2. REALIDAD VIRTUAL

2.1. Hardware gráfico

Cauce gráfico. Proceso de renderizado en tiempo real.

2.2. Software

Grafo de Escena (Scene Graph) y Base de Datos db de un sistema visual (db correlacionadas)

2.3. Interacción hardware-software gráfico

Tema 3. CREACIÓN DE ESCENARIOS

3.1. Avatares.

Técnicas de modelado 3D. Indice de complejidad (Depth Complexity). Modelado de baja complejidad poligonal: formatos de ficheros, importación y exportación de geometrías.

3.2. Técnicas de realismo y optimización

Tratamiento de texturas y su aplicación a geometrías: mapas de bits y formatos, mipmapping. Técnicas de optimización: niveles de detalle (LODs), grafo de escena, antialiasing y filtros en texturas (efecto Moivre).

3.3. Entornos virtuales. Bases de Datos Gráficas orientadas a misiones de vuelo.

Características de escenarios virtuales genéricos y geoespecíficos. Propiedades de escenarios geoespecíficos orientados a formación y entrenamiento de misiones de vuelo. Gráficos vectoriales, tipología e información (DFAD). Estándares topográficos, modelos digitales de elevaciones (MDT, DTED) para la generación de mallas georreferenciadas. Imagen satélite: formatos y rectificación (ortofotos). Bases de Datos gráficas correlacionadas orientadas a misiones de vuelo (OpenFlight, MetaFlight, TerraPage). Estudio y aplicación práctica del estándar CDB (Common Database) del Open Geospatial Consortium (OGC).

Tema 4. ENTORNO DE SIMULACIÓN

4.1. Motor gráfico

Motores gráficos para la visualización en tiempo real de escenarios virtuales 3D de alta calidad visual. Estudio de la arquitectura modular de un motor gráfico de altas prestaciones. Renderizado avanzado SSAO (Screen Space Ambient Occlusion). 6.4. Simulación y control de modelos atmosféricos.

4.2. Integración en Bases de Datos Gráficas Correlacionadas

Implementación del estándar CDB (Common Base Data – Model).

4.3. Interacción con hardware

Dispositivos hápticos y periféricos, conectividad e interacción con el motor gráfico (Oculus Rift, Pedals, Thrustmaster y Joystick). Diseño de instrumentación y mandos de vuelo, diseño básico de cockpit.

7. PLAN DE TRABAJO

a) Cronograma.

Semana N°	Actividad presencial en Aula	Actividad presencial en Laboratorio	Otra actividad presencial	Actividad de Evaluación
1	Presentación de la Asignatura. Tema 1. Lección Magistral	Asistencia.	Búsqueda de documentación.	
2	Tema 2 . Lección Magistral	Aplicaciones prácticas		
3	Tema 2 . Lección Magistral	Asistencia y participación. Aplicaciones prácticas con software específico.		

Semana N°	Actividad presencial en Aula	Actividad presencial en Laboratorio	Otra actividad presencial	Actividad de Evaluación
4	Tema 3. Lección Magistral	Asistencia y participación. Aplicaciones prácticas con software específico.		Entregable Individual 1 (EI1) – 10%: "Informe: Análisis y Perspectivas Futuras de los Full Flight Simulators (FFS)". Competencias evaluadas: CE05
5	Tema 3. Lección Magistral	Asistencia y participación. Aplicaciones prácticas con software específico.		
6	Tema 3. Lección Magistral	Asistencia y participación. Aplicaciones prácticas con software específico.		
7	Tema 3. Lección Magistral	Asistencia y participación. Aplicaciones prácticas con software específico.		E12 – 15%: "Modelado 3D – Generación y Optimización". Competencias evaluadas: CE05, CG06, CE03
8	Tema 3. Lección Magistral	Asistencia y participación. Aplicaciones prácticas con software específico.		
9	Tema 3. Lección Magistral	Asistencia y participación. Aplicaciones prácticas con software específico.		
10	Tema 4. Lección Magistral	Asistencia y participación. Aplicaciones prácticas con software específico.	Tutorías grupales	
11	Tema 4. Lección Magistral	Asistencia y participación. Aplicaciones prácticas con software específico.	Tutorías grupales	
12	Tema 4 . Lección Magistral	Asistencia y participación. Aplicaciones prácticas con hardware específico.	Tutorías grupales	Entregable Grupal 1 (EG1) – 35%: "Escenario Geoespecífico". Competencias evaluadas: CE05, CG06, CE03
13	Tema 4. Lección Magistral	Asistencia y participación.	Tutorías grupales	
14			Tutorías grupales	EG2 – 40%: "Base de Datos Gráfica db para FFS". Competencias evaluadas: CE05, CG06, CE03
15			Tutorías grupales	EO – 100%: "Ejercicios teóricos y Prácticos". Competencias evaluadas: CE05, CG06, CE03.

b) Metodologías Docentes.

Métodos Docentes	EPD	LM	PL	RPA	TP	Otros*
ECTS 6		Χ	Χ	Χ	Х	

EPD: ESTUDIO PERSONAL DIRIGIDO

LM: LECCIÓN MAGISTRAL

PBL: APRENDIZAJE BASADO EN PROYECTOS **PL:** PRÁCTICAS DE LABORATORIO

RPA: RESOLUCIÓN DE PROBLEMAS EN EL AULA

TP: TUTORÍAS PROGRAMADAS

8. SISTEMA DE EVALUACIÓN

a) Tribunal de Evaluación.

Presidente:	José Luis PÉREZ BENEDITO
Vocal:	José Juan ALIAGA MARAVER
Secretario:	Sergio ÁVILA SÁNCHEZ
Suplente:	Luis IZQUIERDO MESA

b) Actividades de Evaluación.

Semana N°	Descripción	Tipo Evaluación	Técnica Evaluativa	Duración	Peso	Nota mínima	Competencias
4	Entregable Individual (EI1)	Trabajo			10%	5	CE05
7	EI2	Trabajo			15%	5	CE05, CG06, CE03
12	Entregable Grupal (EG1)	Trabajo			35%	5	CE05, CG06, CE03
15	EG2	Trabajo			40%	5	CE05, CG06, CE03
16	EO	Examen Ordinario			100%	5	CE05, CG06, CE03

c) Criterios de Evaluación.

Evaluación continua mediante trabajos entregables individuales y grupales de las diferentes partes de la asignatura. El alumno puede **examinarse al final de curso de la totalidad** de la asignatura (Normativa UPM).

9. RECURSOS DIDÁCTICOS

Descripción	Tipo	Observaciones

^{*}Otros (especificar):

Descripción	Tipo	Observaciones
Espacio MOODLE de la asignatura http://moodle.upm.es/	Recursos Web	En esta plataforma se incluyen documentos docentes básicos de la asignatura, enlaces, test de autoevaluación, ejercicios propuestos y resueltos, etc. y se utiliza como método de comunicación de avisos y solución de dudas.
Laboratorio	Equipamiento	En el laboratorio los alumnos dispondrán del software y hardware necesarios para realizar los trabajos programados de la asignatura.
Presagis M&S Suite 16.	Software	Plataforma abierta para el desarrollo de un amplia gama de aplicaciones de simulación en entornos de aire, tierra, mar y protección civil. Todos los productos de la versión 16 de la M&S Suite presentan importantes mejoras que afianzan el foco que Presagis tiene puesto en la visualización de alta calidad y alta fidelidad.
Presagis Creator	Software	Software para la creación de modelos 3D optimizados para la simulación en tiempo real.
Presagis Terra Vista	Software	Software para la creación de sofisticadas bases de datos de terreno, al más alto nivel de correlación, en diferentes formatos: CDB, Open Flight, MetaFlight, TerraPage.
Presagis Vega Prime	Software	Software de visualización para crear y desplegar rápidamente aplicaciones avanzadas de simulación en tiempo real.
Presagis Stage	Software	Software para el desarrollo de sofisticados escenarios de simulación en extensas áreas, para operaciones de misiones, entrenamientos y análisis.

Descripción	Tipo	Observaciones
Presagis Ondulus Radar/IR/NVG	Software	Software para la simulación de sensores radar e IR, basados en la física real y en la caracterización previa de materiales con CREATOR y TERRA VISTA
Presagis VAPS XT		Programa para el diseño de aplicaciones gráficas embebidas de pantallas (HMI) de seguridad y misión crítica para aviónica, con generación de código certificable.

10.OTRA INFORMACIÓN